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A B S T R A C T

The senescence-associated secretory phenotype (SASP) defines the ability of senescent cells to express and se-
crete a variety of extracellular modulators that includes cytokines, chemokines, proteases, growth factors and
bioactive lipids. The role of the SASP depends on the context. The SASP reinforces the senescent cell cycle arrest,
stimulates the immune-mediated clearance of potentially tumorigenic cells, limits fibrosis and promotes wound
healing and tissue regeneration. On the other hand, the SASP can mediate chronic inflammation and stimulate
the growth and survival of tumor cells. The regulation of the SASP occurs at multiple levels including chromatin
remodelling, activation of specific transcription factors such as C/EBP and NF-κB, control of mRNA translation
and intracellular trafficking. Several SASP modulators have already been identified setting the stage for future
research on their clinical applications.

1. Introduction

Senescence is a cell fate triggered by stressors or developmental
signals and is characterized by a stable growth arrest, active metabo-
lism, resistance to cell death and secretion of extracellular factors. The
abundance of senescent cells increases with chronological aging in
multiple tissues [1,2]. The number of senescent cells in very old pri-
mates was estimated in the range of 5–20% [2–4]. Since the human
body contains 37 trillion cells, senescent cells in aging organisms easily
outnumber professional secretory cells. For example, the pituitary
gland has around 1 million-cells for their major secretory cell types [5].
Therefore, the senescence-associated secretory phenotype (SASP) can
have a major effect in the physiology of old organisms and can be re-
sponsible for chronic inflammation and age-linked diseases including
cancer [6,7]. In younger organisms, senescence have positive effects
linked to tumor suppression [8–11], limiting fibrosis [8], promoting
wound healing [12,13] and tissue regeneration [14].

Specialized secretory cell types secrete most extracellular mediators.
However, senescence reactivates the expression of multiple pro-in-
flammatory genes in many different cell types. Here we review our
current understanding of this remarkable gene reprogramming process
that turns any cell type into a secretory cell.

2. A brief overview of the SASP

The SASP defines the secretion of diverse cytokines, chemokines,
growth factors, proteases and lipids by senescent cells. The composition
of this special secretome is variable and depends on the senescence
trigger. The SASP acts as a double-edged sword: it has some beneficial
effects such as allowing the recruitment of the immune system to pre-
malignant lesions [9,15,16] and promoting the repair of damaged tis-
sues [12,13,17]. However, the secretion of many pro-inflammatory
factors such as IL-6, IL-8, membrane cofactor proteins (MCPs) and
(macrophage inflammatory proteins (MIPs) [18] can lead to deleterious
effects such as promoting proliferation [19,20], angiogenesis [21] and
inflammation [18], both in autocrine and paracrine manners. The SASP
has been linked to a persistent DNA damage signaling [22]. In tumor
cells, cytotoxic chemotherapy can induce a SASP response sometimes
without a full development of a senescent phenotype. This therapy-in-
duced SASP has been linked to chemoresistance [23,24]. Multiple
components of the SASP can transmit senescence to neighbouring non-
senescent cells, a phenomenon known as paracrine senescence [25].
The SASP is initially regulated at the transcriptional level. Two main
transcription factors allow the activation of the SASP in response to
senescence inducers: C/EBP and NF-κB.
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3. C/EBP controls the SASP

The CCAT/Enhancer Binding Protein family comprises transcription
factors that are part of the basic leucine zipper (bZIP) superfamily [26].
Six isoforms were characterized: C/EBPα, β, δ, ε, γ and ζ and they can
either homodimerize or heterodimerize. It is important to note that C/
EBPζ does not possess a functional DNA Binding Domain (DBD) which
enacts it to function as a dominant negative of transcriptional activation
when complexed with other members of the family [26]. C/EBPβ has
been shown to regulate many cytokines and factors known to constitute
the SASP such as IL-1β, IL-8, IL-6, GROα and NAP2. Furthermore,
several studies have shown that this transcription factor is necessary for
senescence and also sufficient to induce the process when over-
expressed [10,11,27]. Indeed, it was shown that C/EBPβ is upregulated
during oncogene-induced senescence and that it binds to the IL-6 pro-
moter in this context [11].

Transformed cells harbouring RAS or BRAF oncogenes often express
high levels of the C/EBPβ mRNA and protein. However, in these tumor
cells C/EBPβ cannot exert an anti-proliferative effect because the 3′UTR
of the C/EBPβ mRNA excludes translation from the perinuclear com-
partment where the protein is phosphorylated and activated [28]. Fi-
nally, the C/EBPγ isoform was shown to suppress senescence by
forming heterodimers with C/EBPβ and suppressing the transcription of
SASP genes [29].

4. NF-κB controls the SASP

Many but not all pro-inflammatory genes expressed in senescent
cells required the master transcription factor NF-κB [10,11,16,30,31].
However, non-canonical NF-κB activation can bypass senescence in
melanoma [32] indicating a complex context-dependent function of this
transcription factor. The activation of NF-κB during senescence has
been linked to p38MAPK [33], GATA4 [34], the ROS-PKCdelta-PRKD1
pathway [35], mitochondria [31,36] and the multi-ligand scavenger
receptor CD36 [37] (Fig. 1). P38 increases DNA binding and activity of
NF-κB [33] while GATA4 induces the expression and secretion of IL1A,
which is a well-known activator of NF-κB [34,38]. GATA4 accumulates
in senescent cells due to a decrease in its degradation via autophagy
[34]. IL1A is also regulated at the translational level by mTOR [39] and
at a post-translational level by the inflammasome [25]. SASP activation
through NF-κB is linked to the DNA damage response (DDR) [22] and in
agreement, the methyl transferase MLL1 controls the SASP by inducing
cell proliferation genes, replication stress and DNA damage [40]. The
cytosolic DNA sensor cGAS, links DNA damage to activation of the
SASP. cGAS catalyses the production of the second messenger cGMP
which activates the adaptor protein STING, an activator of both IRF3
and NF-κB [41,42]. STING can be also activated via a non-canonical
pathway triggered by DNA damage that does not depend on cGAS, in-
volves p53 and the ubiquitin E3 ligase TRAF6 and preferentially acti-
vates NF-κB over IRF3 [43]. Since senescence involves DNA damage
signaling [44], it is likely that this pathway is activated in senescent
cells. Finally, CD36 is induced in multiple senescence contexts playing a
critical role in the initiation of the SASP in response to ligands such as
β-amyloid and oxidized LDL (oxLDL) [37,45] which could also play a
role as senescence inducers [46,47].

The antidiabetic drug metformin inhibits NF-κB activation in se-
nescent cells and selectively represses SASP genes that require this
transcription factor [31,36]. Metformin inhibits the expression of most
pro-inflammatory cytokines in cells that experienced oncogene-induced
senescence (OIS) (Fig. 2). Metformin does not inhibit the growth arrest
program of senescent cells [31,36] indicating that the SASP and the cell
cycle arrest in senescence are independently controlled. Consistent with
this idea, expression of the cyclin-dependent kinase inhibitors (CKI)
p21, p16INK4A or RPS14 induces a SASP-free senescent cell cycle arrest
[22,48–50]. Intriguingly, metformin acts in mitochondria to suppress
the SASP and a similar effect was reported after eliminating

mitochondria in senescent cells [51]. Hence, mitochondria are critical
to regulate the senescence phenotype, but precise molecular mechan-
isms are unknown.

5. P53 controls the SASP: N-SASP and P-SASP

The SASP suppresses or promotes tumorigenicity depending on the
status of p53. In the liver, senescent stellate cells secrete factors that
promote macrophage differentiation towards tumor-inhibiting M1
state. In contrast, p53 null stellate cells secrete factors that promote M2
pro-tumorigenic macrophages [52]. In the colon, deletion of p53
changes the characteristics of the SASP, increasing the expression of
TNFα and its ability to induce invasion and proliferation of tumor cells
[53]. In metformin treated OIS cells, only a few secretion products are
highly expressed. One of these genes is SEMA3F, a p53 target gene
involved in antiangiogenesis [54,55]. Hence, the secretome of senes-
cent cells is driven by NF-κB (the N-SASP) and inhibiting this tran-
scription factor dramatically changes the pattern of secreted proteins
allowing a relative enrichment of p53-dependent secretory factors (the
P-SASP). Although p53 promotes the upregulation of some secreted
factors, it is also considered a negative regulator of the SASP, since its
absence promotes an enhanced SASP that is associated with pro-ma-
lignant functions [48]. p53 acts in part by suppressing p38MAPK sig-
nalling to NF-kB. Inactivation of p53 leads to a faster and stronger ac-
tivation of p38MAPK by DNA damage, amplifying the SASP [33].
Treating senescent cells with the MDM2 inhibitor nutlin, increased p53
activity and reduced the expression of the pro-inflammatory cytokines
IL-6 and IL-1A [56].

One important SASP modulator is the tumor suppressor SOCS1.
Although SOCS1 is sufficient to activate p53 and trigger senescence
[57] it is also an inhibitor of NF-κB [58]. SOCS1 triggers a unique
pattern of p53 target gene expression including several secretory pro-
ducts with potential tumor suppression activity (Fig. 2) [59]. SOCS1
also activates p53 to induce DDIT-3 (also known as C/EBPζ), a domi-
nant negative inhibitor of C/EBP family of transcription factors [60].
SOCS1-induced senescence is devoid of the induction of classical SASP
factors although it shows sustained DNA damage signalling [59].

6. Epigenetic control of the SASP

The reactivation of pro-inflammatory gene expression in multiple
senescent non-immune cell types suggests that chromatin remodelling
underlies this genetic reprogramming. Senescent cells exhibit large-
scale changes in chromatin organization including loss of the repressive
H3K27me3 modification that affects up to 65% of SASP genes [61].
These chromatin changes were linked to the downregulation of lamin
B1 expression in senescent cells [61,62]. In addition, SASP genes show
an enrichment for H4K16ac, the histone chaperone HIRA, the histone
variant H3.3 [63] and a global remodelling of the enhancer landscape
[64]. The latter includes the recruitment of BRD4 to superenhancers
close to SASP genes [64].

DNA damage may trigger the chromatin changes required to prime
SASP genes for activation. One mechanism involves the ATM-depen-
dent protein degradation of the histone methyltranferases G9a and GLP
[65]. Activation of ATM also triggers the removal of the histone variant
macroH2A.1 from the chromatin of SASP genes [66]. This removal is
related to the BRCA1-dependent ubiquitination of macroH2A.1 [67].

SASP genes display an enrichment for HMGB2 during oncogene-
induced senescence (OIS) and the loss of this factor inhibits the SASP
without altering the cell cycle arrest of senescent cells [68]. However,
in contrast to this study, low expression of HMGB2 was reported to be
an early event during replicative senescence entry that correlated with
high expression of IL-6 and IL-8, increased nuclear size, changes in
heterochromatin markers and chromatin folding [69]. Notably, upon
entry into senescence, cells exhibited stronger intrachromosomal long-
range interactions. In addition, HMGB2 did not associate to SASP genes
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Fig. 1. Regulation of NF-κB in senescent cells. Multiple pathways converge to activate NF-κB in senescent cells. The initial triggers can originate inside the cells
(cytosolic DNA, cytosolic chromatin fragments, DNA damage) or act on membrane receptors (Aβ peptides, oxLDL, IL1A, HMGB1). The signals converge into the IKK
complex that phosphorylates and disables the inhibitor IκBα that sequesters NF-κB in the cytosol. After nuclear translocation, NF-κB induces the SASP genes but also
ZSCAN4 which further amplify cytokine gene expression.

Fig. 2. Classification of the SASP ac-
cording to the major transcription fac-
tors regulating its components. The N-
SASP is driven by NF-κB and is inhibited by
p53, SOCS1 and metformin. The P-SASP
depends on p53 and its modulator SOCS1
and has been so far understudied. Data in
the figure comes from microarray data sets
GSE98216 (SOCS1) and GSE33612 (met-
formin).
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in replicative senescence [69]. The reasons for these differences remain
to be investigated. However, it is clear that HMGB2 loss is not the only
factor implementing the senescence decision because its inactivation
failed to recapitulate the senescence phenotype [69].

Chromosomes are organized into topologically associated domains
(TADs) whose organization is linked to the regulation of gene expres-
sion. This organization has been revealed using chromosome con-
formation capture methods and is affected by the repressor CTCF, co-
hesin and cohesion-associated proteins [70]. HMGB2 binds to positions
of chromatin insulation and its loss in replicative senescent cells is as-
sociated to changes in TAD boundaries and altered expression of genes
within those TADs [69]. Taken together, these studies support a role of
HMGB2 in reorganizing chromatin in replicative senescence cells and
raise questions about the mechanism responsible for controlling the
same process in OIS.

7. Secreted proteases as modulators of the SASP

It is well known that SASP factors not only include pro-in-
flammatory cytokines, but also a myriad of proteins and enzymes im-
plicated in reorganization of the extracellular matrix (ECM). Among
those enzymes are Matrix Metalloproteinases (MMPs), Serine/cysteine
Proteinase Inhibitors (SERPINs), Tissue Inhibitor of Metalloproteinases
(TIMPs) and Cathepsins (CTSs) [71]. MMPs (1/2/3/7/8/9/13) not only
help to reorganize the ECM, but also play an important role in mod-
ulating immune and inflammatory responses through the processing of
chemokines and subsequent generation of antagonists with anti-in-
flammatory properties [72]. Therefore, secretion of these proteases by
senescent cells might decrease their immune clearance and contribute
to deleterious/pro-tumorigenic features of the SASP due to subsequent
reduced immune surveillance. Likewise, it was shown in a xenograft
model that senescent fibroblasts increased growth of co-transplanted
breast cancer cells in an MMP-dependent manner [73]. The SASP can
recruit other inflammatory cells such as neutrophils and mast cells,
which secrete extracellular proteases that can activate precursors of the
IL-1 family [74–76]. This process generates a local feed-forward am-
plification of the SASP. The final outcome of the interplay between
extracellular proteases and cytokines may depend on the context and
further studies are required to identify factors that tilt the balance to-
wards positive or negative interactions (Fig. 3).

8. HMGB1 and the DAMPs

The SASP includes Damage-associated molecular patterns (DAMPs),
also called Alarmins [77]. As opposed to PAMPs (Pathogen-associated
molecular patterns), DAMPs are endogenous molecules of nuclear or
cytoplasmic origin that can be secreted upon stress induction [77].
DAMPs can induce paracrine senescence and mediate pro-inflammatory
response in an autocrine or paracrine manner [78]. Consequently, they
can stimulate immune cells recruitment, wound healing and tissue re-
pair [79]. The HMGB1 protein (High mobility group protein B1) is the
most studied example, but DAMPs also include histones, S100s pro-
teins, heat shock proteins, mitochondrial and nuclear DNA, RNA, nu-
cleotides [77] and oxidized lipids [80]. In senescence, secretion of
HMGB1 is an early event, occurring 24–48 h post-irradiation [78].
HMGB1 shuttles between the nucleus and the cytoplasm and its sub-
sequent secretion have been shown to depend on CRM1-dependent
nuclear export, followed by loading in secretory lysosomes [81]. This
process can be regulated by multiple post-translational modifications,
such as acetylation [81] and oxidation [82]. Deacetylation of HMGB1
by the NAD-dependent deacetylase SIRT1, an enzyme implicated in
senescence and ageing [83], also blocks its nuclear-to-cytoplasmic
shuttling and secretion [84]. HMGB1 controls mitochondrial fitness
through regulation of HSPB1 and mitophagy [85], suggesting that se-
cretion of HMGB1 in senescent cells may contribute to their mi-
tochondrial dysfunction. Extracellular HMGB1 was shown to induce a

sterile inflammation through TLR receptors binding and induction of IL-
6. In vivo, old mice showed decreased nuclear HMGB1 in comparison to
young mice, and also increased HMGB1 in their serum [78]. Loss of
nuclear and gain of extracellular HMGB1 both contribute to the se-
nescence phenotype, notably by increasing genomic instability and
telomere dysfunction [86] and extracellularly by TLR/NF-κB stimula-
tion of SASP respectively [78]. Consequently, overexpression or knock-
down of HMGB1 can induce senescence in a p53-dependent manner
[78]. Overall, secretion of DAMPs including HMGB1 has been linked to
chronic inflammation and several age-related diseases such as athero-
sclerosis and arthritis [87], thereby underscoring their relevance in the
senescence field as unique SASP factors.

9. Lipids in the SASP

Senescent cells also have the ability to secrete bio-active lipids, in-
cluding eicosanoids derived enzymatically from arachidonic acid [88].
The production of eicosanoids is mediated by two major enzymes:
Prostaglandin-endoperoxide synthase (PTGS), better known as cy-
clooxygenase (COX), that is responsible for formation of prostanoids,
and arachidonate 5-lipoxygenase (ALOX5), that converts arachidonic
acid into leukotrienes. These lipid compounds act as autocrine or
paracrine factors that mediate a diversity of physiological functions,
such as inflammation, vasodilation, immune responses and smooth
muscle contraction [88].

Several studies have focused on the role of cyclooxygenases in se-
nescence. COX2 is overexpressed in replicative and stress-induced se-
nescence [11,31,89,90], and at least one selective COX2 inhibitor
prevents senescence [91]. However, not all COX2 inhibitors can block
senescence, suggesting that COX2 regulates the process by a non-cata-
lytic mechanism [92]. Interestingly, COX2 expression is also increased
in old cells [93–95] and post-natal transgenic expression of COX2 in-
duces aging-related phenotypes in mice [96]. The major product of
COX2 activity is prostaglandin E2 (PGE2) whose levels are increased in
both replicative and premature senescence [97]. Also, senescent fibro-
blasts express very low levels of prostaglandin-D-synthase, explaining
why PGE2 is the most important prostaglandin in senescence [98].
Furthermore, PGE2 treatment induces senescence in human fibroblasts
[99–101] and in CD8 T cells [102]. Several studies have identified that
COX2-mediated prostaglandin E2 (PGE2) production promotes a tumor-
promoting environment in melanoma, breast, colorectal and hepato-
cellular carcinoma [103,104]. PGE2 expression is also increased in fi-
broblasts from patients of chronic obstructive pulmonary disease,
which has been associated with lung fibroblasts senescence [105].

Leukotrienes and ROS are generated from arachidonic acid by 5-
lipoxygenase, which has been reported to be a senescence-mediator
through the p53 pathway [89]. Leukotriene C4 is a major mediator of
oxidative DNA damage acting in an intracrine manner via nuclear
translocation of the ROS producing enzyme NOX4 [106], which is re-
quired for RAS-induced senescence [107]. Leukotriene D4 can also in-
duce cellular senescence dependent on cysteinyl leukotriene receptor 1
(cysLTR1) in osteoblasts [108], a receptor that also has a role in
chondrocyte senescence [109].

10. SASP factors as intracrine signalling molecules

Several SASP components not only get secreted in the extracellular
milieu, but also accumulate at very high levels in cells undergoing
cellular senescence. Among these components, IL-6, PGE2, leukotriene
C4, SERPINB2 (PAI-2) and SERPINB4 have been shown to be essential
for senescence induction and maintenance acting via intracrine sig-
naling, rather than outside of the cell [48,100,106,110,111]. Con-
cerning PAI-2, it has been shown to be a direct target of p53 and to co-
immunoprecipitate with p21, leading to its stabilization. Indeed,
knockdown of p21 reverts PAI-2-induced senescence, whereas knock-
down of p53 fails to revert the phenotype [110]. As for SERPINB4, it
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has recently been shown to act on IMMP2L-mediated mitochondrial
reprogramming to favor senescence over apoptosis upon oxidative
stress [111]. Even though these proteins get secreted as part of the
SASP, B subtype of SERPINs also accumulate inside cells due to lack of
signal peptide [112]. Importantly, whereas several SASP factors are
usually amplified in cancers (e.g. CXCL1/2/5, CCL2/3, etc.), according
to cBioPortal, PAI-2 and SERPINB4 are both deleted in several cancers,
especially in pancreatic cancer where it can be deleted in up to 24% of
samples, confirming their tumor suppressor function.

11. Therapy-induced senescence and tumor-promoting properties
of the SASP

Studies to better understand the molecular mechanisms regulating
the SASP are becoming more and more clinically relevant. Cancer
chemotherapy induces DNA damage both in tumor cells and in the
surrounding stromal cells, such as fibroblasts, which subsequently enter
senescence. The secreted products of the senescent stroma can then
confer resistance to cancer chemotherapy [23]. It was recently reported
that therapy-induced DNA damage in fibroblasts induced senescence
and stimulated expression of multiple SASP factors such as AREG,
SPINK1, MMP3, and expression of the transcription factor ZSCAN4
[113]. This transcription factor is induced in a DNA-damage dependent
manner, through the ATM-TRAF6-TAK1-NF-κB axis in the surrounding
stroma of tumors from NSCLC and breast cancer patients having re-
ceived chemotherapy [113]. ZSCAN4 expression is associated to poor
survival and cell culture models suggest a role for ZSCAN4 in a loop of
amplification of the SASP [113]. It is known that the SASP can stimu-
late tumorigenesis and drug resistance by inducing a pro-inflammatory
microenvironment [114]. A combination of TAK1 inhibition with che-
motherapy blocks drug resistance by suppressing the SASP of senescent
stromal cells in prostate and breast cancer xenografts, inducing tumor
regression [113]. Altogether, this opens a promising field of research on
how SASP modulation can benefit cancer patients undergoing DNA-

damaging chemotherapy.

12. The SASP in senescence induced by lamin A defects

Cellular senescence is also triggered by defects in nuclear lamina
assembly. In the Hutchinson-Gilford progeria syndrome, a disease
characterized by a premature aging, a truncated form of lamin A, called
progerin, has a defective turnover [115] and thus accumulates, causing
a disturbed nuclear lamina, DNA damage and consequently cellular
senescence [116]. Loss of the enzyme ZMPSTE24, which processes
prelamin A into mature lamin A also leads to accumulation of prelamin
A and senescence [117]. The SASP in this specific senescence model can
trigger paracrine senescence through the monocyte chemoattractant
protein-1 (MCP-1) and its binding to its receptor CCR2 on target cells
[118]. Both progerin overexpression and ZMPSTE24 depletion in
human mesenchymal stem cells induce an ATM/ATR-dependent DNA
damage response that mediates the stabilisation of the transcription
factor GATA4 that was shown to be necessary for NF-κB-dependent
induction of MCP-1 and its subsequent secretion [118].

13. SASP, reprogramming and cellular plasticity

The SASP plays a role in embryonic development [119–121] and the
reprogramming of cells towards a stem-like phenotype [122,123].
However, the SASP can either stimulate or inhibit reprogramming de-
pending on the context. In a mouse model of induced pluripotent stem
cells (iPSCs) elimination of senescent cells with the senolytic ABT-263,
pharmacological inhibition of NF-κB or inhibition of IL-6 using an anti-
IL-6 antibody, inhibited reprogramming and stem cell generation
[122]. This senescence-driven reprogramming of cells was shown to be
dependent on tissue injury. Consequently, bleomycin-treated cells have
increased DNA damage [122] and secrete pro-inflammatory cytokines
among which IL-6 is a major driver of cell reprogramming [122]. On
the other hand, during aging, NF-κB hyperactivation leads to

Fig. 3. Model proposed for positive and negative modulation of SASP through secreted proteases. (A) Secretion of pro-inflammatory cytokines by senescent
cells (blue) leads to recruitment of immune cells (purple and pink) for further clearance. (B) CD36 is bound by SASP components from cells in the vicinity, leading to
establishment of paracrine senescence and SASP. (C) In a context of acute inflammation, following extravasation of immune cells, the latter secrete proteases with the
potential of amplifying the SASP through processing of secreted precursors from IL to 1 family. (D) The inter-senescent cells paracrine effect of SASP leads to MMPs-
mediated degradation of pro-inflammatory cytokines. (E) In the context of carcinogenesis (orange), subsequent reduction of pro-inflammatory cytokines in the
extracellular compartment leads to decreased recruitment of immune cells and increased tumor growth. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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upregulation of the reprogramming repressor DOT1L, which down-
regulates genes associated to pluripotency, thereby impairing iPSCs
production [124]. Moreover, in vivo inhibition of DOT1L increases
lifespan and ameliorates age-associated features in progeroid mice.
Therefore, the precise action of SASP on reprogramming of cells is still
poorly understood. Interestingly, it was recently shown that transient
exposure to SASP leads to increased regenerative capacity in vivo and
upregulation of stem cell markers, whereas prolonged exposure to the
SASP leads to paracrine senescence and impairment of regenerative
capacities [123]. This might reflect the dynamic properties of the SASP
which at least is divided in two phases: Notch-high, followed by Notch-
low phase [125]. The first is associated to a TGF-β-dependent SASP
with immunosuppressive, fibrogenic and tissue regeneration properties,
whereas the latter is associated to a NF-κB and C/EBPβ-dependent SASP
with pro-inflammatory, fibrolytic and immune clearance properties.
However, in situations where clearance is not achieved, further evolu-
tion of the SASP is likely a situation that can stimulate preneoplastic
lesions to bypass senescence and acquire stem cell properties, thereby
potentiating their transformation [126]. Finally, it is also likely that the
heterogeneity of SASP composition across different cell types [127]
could impact on the establishment of a micro-environment favourable
for cell reprogramming.

14. Conclusions

The SASP is regulated at multiple levels. First, chromatin remodel-
ling and changes in chromatin folding prime pro-inflammatory genes
for activation. Although many histone modifications and non-histone
chromosomal proteins have been linked to senescence, it is not yet
understood how these processes are initiated. Second, specific tran-
scription factors cooperate to dynamically establish the composition of
the SASP. NF-κB, p53, C/EBP and GATA4 have been identified as key
SASP regulators but it is likely that additional players will be identified.
Third, the translation of several SASP factors is regulated by TOR sig-
naling in senescent cells [39]. Fourth, the trans Golgi network, its
components: PRKD1, ARF1 and PI4KIIIβ and the carrier membrane
protein SCAMP4 are upregulated in senescent cells and required for the
secretion of several SASP factors [128,129]. Finally, genes involved in
intracellular trafficking undergo alternative splicing in senescent cells
and PTBP1, a regulator of alternative splicing, is required for the pro-
inflammatory SASP in senescent cells [130]. Further understanding of
the molecular mechanism that control the SASP will help to design
therapies for its modulation.

Pharmacological agents that decrease the SASP include the anti-
diabetic drug metformin [31,131], glucocorticoids [132], JAK in-
hibitors [133], TAK1 inhibitors [113], rapamycin [39], nutlin [56] and
trabectedin, an alkaloid isolated from the Caribbean tunicate Ectei-
nascidia turbinate [134]. The effects of these drugs have not been sys-
tematically studied in all situations associated to senescence. Also,
when these drugs are effective, there is little data to support that they
acted by suppressing the SASP. On another matter, the ability of se-
nescent cells to act as factories for secretion of biological mediators
could eventually be engineered for medical applications.
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